Manuales y tutoriales del lenguaje de programación R

Microaprendizaje / Tiempo de lectura: 6 minutos

 

Manuales del lenguaje estadístico R

R es un lenguaje de programación distribuido como software libre (GNU/ GPL) que dispone de un entorno de desarrollo y generación de gráficos estadísticos.

 

El lenguaje R es ampliamente utilizado entre la comunidad científica, estadística y minería de datos (muy de moda actualmente debido al auge del Big Data / Data Science).

 

Es un proyecto GNU, similar al lenguaje S. El entorno dónde se ha desarrollado, en los Laboratorios Bell (antes AT&T, ahora Lucent Technologies) por John Chambers y colegas.

 

R puede ser considerado como una implementación diferente de S. Hay algunas diferencias importantes, pero mucho código escrito para S se ejecuta sin problema en R.

 

R proporciona una amplia variedad de estadística ( modelos lineales y no lineales , pruebas estadísticas clásicas, análisis de series temporales , clasificación , agrupamiento , … ) y las técnicas gráficas, y es altamente extensible.

 

El lenguaje S es a menudo el vehículo de elección para la investigación en metodología estadística. R proporciona una ruta de código abierto a la participación en esa actividad.

 

Uno de los puntos fuertes de R es la facilidad con la que bien diseñados parcelas con calidad de publicación se pueden producir, como símbolos matemáticos y fórmulas cuando sea necesario.

 

Se ha descuidado las opciones de diseño de menor importancia en los gráficos, pero el usuario mantiene el control total.

 

El software R está disponible como software libre bajo los términos de la GNU General Public License de la Free Software Foundation en forma de código fuente.

 

Se compila y se ejecuta en una amplia variedad de plataformas UNIX y sistemas similares (incluyendo FreeBSD y Linux) , Windows y MacOS.

 

R es un conjunto integrado de servicios de software para la manipulación de datos, cálculo y representación gráfica.

 

Incluye un manejo eficaz de los datos y la instalación de almacenamiento, un conjunto de operadores para los cálculos de matrices, en matrices particulares, una coherente colección integrada de herramientas intermedias para el análisis de datos.

 

Facilidades gráficas para el análisis y visualización de datos ya sea en pantalla o en papel, y un lenguaje sencillo y eficaz bien desarrollado de programación que incluye condicionales, bucles, definidos por el usuario y funciones recursivas de entrada y salida de las instalaciones.

 

El término «entorno» se pretende caracterizar como un sistema totalmente planificado y coherente , en lugar de una acumulación gradual de herramientas muy específicas y poco flexibles, como suele ser el caso con otro software de análisis de datos.

 

Tanto R, como S, está diseñado en torno a un lenguaje de programación real, y permite a los usuarios añadir funcionalidad adicional mediante la definición de las nuevas funciones.

 

Gran parte del sistema es a su vez escrita en el dialecto R de S, lo que hace que sea fácil para los usuarios a seguir las decisiones algorítmicas hechos.

 

Para tareas computacionalmente intensivas, C , C + + y Fortran se puede vincular y llamó en tiempo de ejecución . Los usuarios avanzados pueden escribir código C para manipular directamente los objetos R.

 

Muchos usuarios ven a R como un sistema de estadísticas. Preferimos pensar en él de un entorno en el que se aplican técnicas estadísticas.

 

R puede ser extendido (fácilmente ) a través de paquetes. Hay alrededor de ocho paquetes suministrados con la distribución de R y muchos más están disponibles a través de la familia CRAN de sitios de Internet que cubren una amplia gama de estadísticas modernas.

 

R tiene su propio formato de documentación LaTeX como, que se utiliza para suministrar una amplia documentación , tanto en línea en varios formatos y en papel.

 

Descargas y manuales en la web r-project.org.

 

 

MOOCs sobre el lenguaje de programación R

MOOCs sobre el lenguaje de programación R.

 

  • R Programming en coursera.org. «En este curso aprenderá cómo programar en R y cómo usar R para un análisis de datos efectivo.

 

    • Aprenderá cómo instalar y configurar el software necesario para un entorno de programación estadística y describirá los conceptos genéricos del lenguaje de programación a medida que se implementan en un lenguaje estadístico de alto nivel.

 

    • El curso cubre problemas prácticos en informática estadística que incluyen programación en R, lectura de datos en R, acceso a paquetes R, escritura de funciones R, depuración, creación de perfiles de código R y organización y comentario del código R.

 

    • Los temas del análisis de datos estadísticos proporcionarán ejemplos de trabajo.»

 

 

  • Introduction to R for Data Science en edX. «Fundamentos introductorios del lenguaje R y sintaxis básica. Qué es R y cómo se usa para realizar el análisis de datos. Familiarizarse con las principales estructuras de datos R. Crea tus propias visualizaciones usando R».

 

 

 

  • Pese a su potencialidad, versatilidad y flexibilidad; R puede parecer árido en el momento en que el usuario trata de interaccionar con sus componentes.

 

  • Se suele decir que “la curva de aprendizaje es lenta”. Sin embargo, los resultados que produce son ámpliamente satisfactorios. Este curso está destinado a “lubricar” esos primeros encuentros con éste entorno estadístico.»

 

 

 

 

Bibliografía recomendada del lenguaje de programación R.

 

libro programación con R avanzada

R en profundidad. Programación, gráficos y estadística por RCLIA|#RC LIBROS. Dirigido a estudiantes y profesionales de: Ingeniería. Matemáticas. Estadística. Marketing. El libro incluye una gran cantidad de ejercicios que permiten al lector realizar prácticas de aprendizaje y formación.

Libro programación y estadística con R

Programación y estadística con R: Fundamentos de programación y técnicas para el análisis exploratorio, contraste de hipótesis y aprendizaje automático por Independently published.

«Este libro consta de dos partes, en la primera, denominada Programación, se describe el fundamento del lenguaje de programación R sin hacer referencia expresa a la estadística.

 

En la segunda parte del libro, titulada Estadística, se aborda de forma directa tres aspectos de especial importancia en el análisis de datos: Análisis exploratorio, contraste de hipótesis y modelos de clasificación (aprendizaje automático).

 

El análisis exploratorio proporciona las técnicas para conocer los datos. Estadísticos clásicos como la media o varianza (entre otros) y técnicas mucho más sofisticadas como el análisis de conglomerados o el análisis de componentes principales.

 

El contraste de hipótesis permite comprobar el ajuste de nuestros datos a estadísticos o distribuciones teóricas, tales como la comparación de medias, varianzas, intervalos de confianza o pruebas de normalidad, entre otros.

 

Por último, el capítulo dedicado a los modelos constituye la parte más avanzada del libro ya que se proporcionan técnicas de clasificación y predicción de datos como la regresión múltiple, logística, árboles de clasificación, redes neuronales, etc.»

 

 

PDF Introducción a la programación con R

Introducción a la programación con R: R como primer lenguaje de programación, orientado a la aplicación científica por Independently published.

 

«El desarrollo de la toma de decisiones a partir del análisis de datos masivos (Big data), la inteligencia artificial o la robótica, por poner unos ejemplos, hace que cada vez sea más necesario tener conocimientos de programación.

 

Este libro introduce a R como lenguaje de inicio a la programación. Se pretende que R sea utilizado como primer lenguaje de programación, por lo que se puede aprender a programar partiendo del nivel más básico con un lenguaje, como es R, de amplia difusión en el mundo de la ciencia y la ingeniería.

 

Está especialmente pensado para aquellos que necesitan la programación en la resolución de problemas básicos relacionados con el mundo de la ciencia y la técnica, pero en el que no se aborda de forma directa el análisis de datos ni la metodología estadística.»

 

ebook R. Lenguaje de programación y análisis estadístico de datos

R. Lenguaje de programación y análisis estadístico de datos por Ibergarceta Publicaciones S.L.

 

«R es un lenguaje y entorno de programación que, además, proporciona un amplio abanico de herramientas estadísticas y gráficas, enriquecido con la posibilidad de cargar diferentes bibliotecas o paquetes con finalidades específicas de análisis estadístico.»

 

 

 

 

 

Más enlaces sobre el lenguaje de programación R:

Un comentario sobre «Manuales y tutoriales del lenguaje de programación R»

  • Rubén D. dice:

    Compartir con el grupo que los interesados en Analytics y estudiar para data scientist, la programación estadística en R es fundamental. Haceros con un buen libro, funcionan por comando como los programas serios de antes.

Deja una respuesta

Tu dirección de correo electrónico no será publicada.

Puedes usar estas etiquetas y atributos HTML:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>